Code: 23ES1201

I B.Tech - II Semester - Regular Examinations - JULY 2024

BASIC CIVIL & MECHANICAL ENGINEERING (Common for CE, ME, IT, AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts: Part-A and Part-B.

- 2. Each Part contains:
 - 5 short answer questions. Each Question carries 1 Mark and
 - 3 essay questions with an internal choice from each unit. Each question carries 10 marks.
- 3. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Enlist the safety measures in Civil Engineering.	L1	CO1
1.b)	Differences between substructure and super structure.	L2	CO5
1.c)	Define Surveying.	L1	CO2
1.d)	Define hydrology.	L1	CO4
1.e)	Classify types of dams.	L2	CO4

			BL	СО	Max. Marks
		UNIT-I		1	
2	a)	Write short notes on scope of Civil Engineering.	L2	CO1	5 M
	b)	List types of cement and explain any three of them.	L3	CO5	5 M
	•	OR			

3	a)	List the disciplines of Civil Engineering	L2	CO1	5 M
		and explain Transportation and Structural			0 111
		Engineering.			
	b)		13	CO5	5 M
	0)		LS	COS	<i>J</i> 1V1
		construction techniques.			
		UNIT-II			
4	a)	With neat sketches explain the principles	L2	CO2	5 M
		of surveying.			
	b)	The following staff readings were	L4	CO2	5 M
		observed successfully with level, the			
		instrument having been moved after 3 rd ,			
		6 th and 8 th readings; 2.228, 1.606, 0.988,			
		2.090, 2.864, 1.262, 0.602, 1.982, 1.044,			
		2.684 meters. Enter the above readings in			
		a page of a level book and calculate the			
		RL of points if the first reading was taken			
		with a staff held on bench mark of			
		300mt.			
		OR			
5	a)	List and explain the instruments used in	L2	CO2	5 M
		surveying.			
	b)	Explain the characteristics of Contour	1.3	CO2	5 M
		Mapping.			U ATA
]				
		UNIT-III			
6	a)	Explain the components of airport with	L2	CO3	5 M
		neat sketch.			
		1	•		

	b)	Differentiate between Flexible and Rigid	L3	CO3	5 M
		pavement.			
	OR				
7	a)	Explain the water quality parameters.	L2	CO4	5 M
	b)	Explain the components of dam with neat	L3	CO4	5 M
		sketch.			

PART - B

		BL	CO
1.f)	Give the classification of engineering materials.	L1	CO1
1.g)	Mention any two roles of mechanical engineer in	L1	CO1
	the society.		
1.h)	Define casting process.	L1	CO2
1.i)	What is a power plant?	L1	CO3
1.j)	Mention the configurations of robot.	L1	CO3

								BL	СО	Max. Marks
					U	NIT-	·I		•	
8	a)	Explain		the	new	t	echnological	L2	CO1	6 M
		develop	me	nts in	mecha	ınical	engineering			
		in any two sectors.								
	b)	Write th	ne a	pplicat	tions o	f met	als.	L1	CO1	4 M
						OR				
9	a)	What	is	the	role	of	mechanical	L1	CO1	4 M
		engineering in industries?								
	b)	Write	a	short	note	on	engineering	L1	CO1	6 M
		material	ls.							

		UNIT-II							
10	a)	Differentiate between hot and cold	L2	CO2	5 M				
		working processes.							
	b)	Explain the principle of additive	L2	CO2	5 M				
		manufacturing technology.							
		OR							
11	a)	Explain the working of Otto cycle with	L2	CO2	6 M				
		the help of p-v and T-s diagrams.							
	b)	What are the advantages and	L1	CO2	4 M				
		disadvantages of electric vehicles?							
		UNIT-III							
12	a)	With neat line diagram, explain the	L2	CO3	6 M				
		working principle of a thermal power							
		plant.							
	b)	What are different types of belt drives?	L1	CO3	4 M				
	OR								
13	a)	Explain different types of robotic joints	L2	CO3	6 M				
		with line diagrams.							
	b)	Write any four applications of robots in	L1	CO3	4 M				
		industry.							